Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274906

RESUMO

BackgroundSeveral studies have shown that SARS-CoV-2 BA.1 omicron is an immune escape variant and current vaccines and infection with pre-omicron variants provide limited protection against BA.1. Meanwhile, however, omicron BA.2 has become the dominant variant in many countries and has replaced BA.1. As BA.2 has several mutations especially in the receptor binding and the N terminal domain compared to BA.1, we analyzed whether BA.2 shows further immune escape relative to BA.1. MethodsWe characterized neutralization profiles against the new BA.2 omicron variant in plasma samples from a variety of individuals with different numbers of exposures to infection/vaccination, including samples from previously virus-naive, BA.2 omicron-infected individuals. To illustrate antigenic differences of the two omicron sub-variants and pre-omicron variants we performed antigenic cartography and generated antibody landscapes. ResultsUnvaccinated individuals after a single exposure to BA.2 had limited cross-neutralizing antibodies to pre-omicron variants and to BA.1. Consequently, our antigenic map, which included all Variants of Concern and both BA.1 and BA.2 omicron sub-variants, showed that both omicron sub-variants are distinct to pre-omicron variants, but that the two omicron variant are also antigenically distinct from each other. The antibody landscapes illustrate that cross-neutralizing antibodies against the whole antigenic space, as described in our maps, are generated only after three or more exposures to antigenically close variants but also after two exposures to antigenically distinct variants. ConclusionsHere, we describe the antigenic space inhabited by the relevant SARS-CoV-2 variants, the understanding of which will have important implications for further vaccine strain adaptations.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273565

RESUMO

Omicron is currently the dominant SARS-CoV-2 variant and several sublineages have emerged. Questions remain about the impact of previous SARS-CoV-2 exposure on cross-variant immune responses elicited by BA.2 infection compared to BA.1. Here we show that without previous history of COVID-19, BA.2 infection induces a reduced immune response against all variants of concern (VOC) compared to BA.1 infection. The absence of ACE2 binding in sera of previously naive BA.1 and BA.2 patients indicates a lack of meaningful neutralization. In contrast, anti-spike antibody levels and neutralizing activity greatly increased in the BA.1 and BA.2 patients with a previous history of COVID-19. Transcriptome analyses of peripheral immune cells showed significant differences in immune response and specific antibody generation between BA.1 and BA.2 patients as well as significant differences in expression of specific immune genes. In summary, prior infection status significantly impacts the innate and adaptive immune response against VOC following BA.2 infection.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272837

RESUMO

Antibody response following Omicron infection is reported to be less robust than that to other variants. Here we investigated how prior vaccination and/or prior infection modulates that response. Disease severity, antibody responses and immune transcriptomes were characterized in four groups of Omicron-infected outpatients (n=83): unvaccinated/no prior infection, vaccinated/no prior infection, unvaccinated/prior infection and vaccinated/prior infection. The percentage of patients with asymptomatic or mild disease was highest in the vaccinated/no prior infection group (87%) and lowest in the unvaccinated/no prior infection group (47%). Significant anti-Omicron spike antibody levels and neutralizing activity were detected in the vaccinated group immediately after infection but were not present in the unvaccinated/no prior infection group. Within two weeks, antibody levels against Omicron, increased. Omicron neutralizing activity in the vaccinated group exceeded that of the prior infection group. No increase in neutralizing activity in the unvaccinated/no prior infection group was seen. The unvaccinated/prior infection group showed an intermediate response. We then investigated the early transcriptomic response following Omicron infection in these outpatient populations and compared it to that found in unvaccinated hospitalized patients with Alpha infection. Omicron infected patients showed a gradient of transcriptional response dependent upon prior vaccination and infection status that correlated with disease severity. Vaccinated patients showed a significantly blunted interferon response as compared to both unvaccinated Omicron infected outpatients and unvaccinated Alpha infected hospitalized patients typified by the response of specific gene classes such as OAS and IFIT that control anti-viral responses and IFI27, a predictor of disease outcome.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270617

RESUMO

Heterologous ChAdOx1-BNT162b2 vaccination induces a stronger immune response than two doses of BNT162b2 or ChAdOx1. Yet, the molecular transcriptome, the germline allelic variants of immunoglobulin loci and anti-Omicron antibody levels induced by the heterologous vaccination have not been formally investigated. Moreover, there is a paucity of COVID vaccine studies including diverse genetic populations. Here, we show a robust molecular immune transcriptome and antibody repertoire in 51 office workers from the Republic of Korea after a heterologous ChAdOx1-BNT162b2 vaccination or a homologous ChAdOx1-ChAdOx1 vaccination. Anti-spike-specific IgG antibody levels in the heterologous group increased from 14,000 U/ml to 142,000 AU/ml within eight days after the BNT162b2 vaccination. In contrast, antibody levels in the homologous group increased two-fold after the second ChAdOx1 dose. Antibody titers against the Omicron spike protein as compared to the ancestral strain were reduced to a lesser extent in the heterologous group. RNA-seq conducted on immune cells demonstrated a stronger activation of interferon-induced genetic programs in the heterologous cohort. An increase of specific IGHV clonal transcripts encoding neutralizing antibodies was preferentially detected in the heterologous cohort. Enrichment of B cell and CD4+ T cell responses were observed following both heterologous and homologous vaccination using scRNA-seq, but clonally expanded memory B cells were relatively stronger in the ChAdOx1-BNT162b2 cohort. In summary, a heterologous vaccination with ChAdOx1 followed by BNT162b2 provides an innate and adaptive immune response exceeding that seen in homologous ChAdOx1 vaccinations but equivalent to that seen in homologous BNT162b2 vaccination.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270263

RESUMO

Recently, the Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been described as immune escape variant. Here, we analyzed samples from BA.1 (Omicron) convalescent patients with different constellations of prior SARS-CoV-2 immunity regarding vaccination and previous infection with a non-Omicron variant and determined titers of neutralizing antibodies against different SARS-CoV-2 variants (D614G, Alpha, Beta, Delta, Gamma, Omicron). We found high neutralizing antibody titers against all variants for vaccinated individuals after BA.1 breakthrough infection or for individuals after infection with a pre-omicron variant followed by BA.1 infection. In contrast, samples from naive unvaccinated individuals after BA.1 infection mainly contained neutralizing antibodies against BA.1 but only occasionally against the other variants.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263284

RESUMO

Knowledge about the impact of prior SARS-CoV-2 infection of the elderly on mRNA vaccination response is needed to appropriately address the need for booster vaccination in this vulnerable population. To address this, we investigated antibody and genomic immune responses in 16 elderly (avg. 81 yrs.) individuals that had received a single booster dose of BNT162b vaccine 15 months after recovering from COVID-19. Spike-specific IgG antibody levels increased in each of the study participants from an average of 710 U/ml prior to the vaccination to more than 40,000 U/ml within ten weeks after the vaccination. In contrast, anti-spike-specific IgG antibody levels averaged 2,190 U/ml in 14 healthy SARS-CoV-2-naive individuals (avg. 58 yrs.) ten weeks after the second dose of BNT162b. RNA-seq conducted on PBMCs demonstrated the activation of interferon-activated genetic programs in both cohorts within one day. Unlike their transient induction in the younger naive population, persistent activity and the initiation of additional cell cycle regulated programs were obtained in the older COVID-19 recovered population. Here we show that the elderly, a high-risk population, can mount a strong antibody and a persistent molecular immune response upon receiving a single dose of mRNA vaccine 15 months after recovery from COVID-19.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257952

RESUMO

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. B.1.1.7 (VOC-202012/01) has become the predominant variant in many countries and a new lineage (VOC-202102/02) harboring the E484K escape mutation in the B.1.1.7 background emerged in February 20211. This variant is of concern due to reduced neutralizing activity by vaccine-elicited antibodies2,3. However, it is not known whether this single amino acid change leads to an altered immune response. Here, we investigate differences in the immune transcriptome in hospitalized patients infected with either B.1.1.7 (n=28) or B.1.1.7+E484K (n=12). RNA-seq conducted on PBMCs isolated within five days after the onset of COVID symptoms demonstrated elevated activation of specific immune pathways, including JAK-STAT signaling, in B.1.1.7+E484K patients as compared to B.1.1.7. Longitudinal transcriptome studies demonstrated a delayed dampening of interferon-activated pathways in B.1.1.7+E484K patients. Prior vaccination with BNT162b vaccine (n=8 one dose; n=1 two doses) reduced the transcriptome inflammatory response to B.1.1.7+E484K infection relative to unvaccinated patients. Lastly, the immune transcriptome of patients infected with additional variants (B.1.258, B.1.1.163 and B.1.7.7) displayed a reduced activation compared to patients infected with B.1.1.7. Acquisition of the E484K substitution in the B.1.1.7 background elicits an altered immune response, which could impact disease progression.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256862

RESUMO

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. The B.1.351 variant carrying the escape mutation E484K in the receptor binding domain is of particular concern due to reduced immunological protection following vaccination. Protection can manifest as early as 10 days following immunization with full protection two weeks following the second dose, but the course is not well-characterized for variants. Here, we investigated the immune transcriptome of six elderly individuals (average age 82 yr.) from an old peoples home, who contracted B.1.351, with four having received the first dose of BNT162b eight to 11 days prior to the onset of COVID-19 symptoms. The patients were hospitalized and received dexamethasone treatment. Immune transcriptomes were established from PBMCs approximately 10 and 35 days after the onset of COVID-19 symptomology. RNA-seq revealed a more intensive immune response in vaccinated patients as compared to unvaccinated ones. Specifically, transcription factors linked to the JAK/STAT pathway, interferon stimulated genes, and genes associated with innate antiviral immunity and COVID-19-SARS-CoV-2 infection were highly enriched in vaccinated patients. This rendered the transcriptomes of the older vaccinated group significantly different than older unvaccinated individuals infected at the same institution and more similar to the immune response of younger unvaccinated individuals (age range 48-62) following B.1.351 infection. All individuals in this study whether vaccinated or not were hospitalized due to B.1.351 infection and one vaccinated patient died illustrating that although an enhanced immune response was documented infection it was insufficient to protect from disease. This highlights the need for maintaining physical distancing and prevention measures throughout the time course of vaccination in older adults.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252089

RESUMO

BackgroundIn early March 2020, a SARS-CoV-2 outbreak in the ski resort Ischgl in Austria initiated the spread of SARS-CoV-2 throughout Austria and Northern Europe. In a cross-sectional study, we found that the seroprevalence in the adult population of Ischgl had reached 45% by the end of April. To answer the question of how long immunity persists and what effect this high-level immunity had on virus transmission, we performed a follow-up study in early November, 2020. MethodsOf the 1259 adults that participated in the baseline study, 801 could be included in the follow-up. The study involved the analysis of binding and neutralizing antibodies and T cell responses. In addition, the incidence of SARS-CoV-2 infections in Ischgl was compared to the incidence in similar municipalities in Tyrol throughout 2020. FindingsFor the 801 individuals that participated in both studies, the seroprevalence declined from 51.4% (95% confidence interval (CI) 47.9 - 54.9) to 45.4% (95% CI 42.0 - 49.0). Median antibody concentrations dropped considerably but antibody avidity increased. T cell responses were analysed in 93 cases, including all 4 formerly seropositive cases that had lost antibodies in all assays, three of which still had detectable T cell memory. In addition, the incidence in the second COVID-19 wave that hit Austria in November 2020, was significantly lower in Ischgl than in comparable municipalities in Tyrol or the rest of Austria. InterpretationThis study has important implications as it shows that although antibodies to SARS-CoV-2 declined, T and B cell memory can be detected for up to 8 months. Complemented by infection prevention measures a level of around 40-45% immunity in Ischgl significantly reduced local virus transmission during the second wave in Austria in November 2020. FundingFunding was provided by the government of Tyrol and the FWF Austrian Science Fund.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20185884

RESUMO

To investigate prevalence of ongoing activation of inflammation following asymptomatic SARS-CoV-2 infection we characterized immune cell transcriptomes from 43 asymptomatic seropositive and 52 highly exposed seronegative individuals with few underlying health issues following a community superspreading event. Four mildly symptomatic seropositive individuals examined three weeks after infection as positive controls demonstrated immunological activation. Approximately four to six weeks following the event, the two asymptomatic groups showed no significant differences. Two seropositive patients with underlying genetic disease impacting immunological activation were included (Cystic Fibrosis (CF), Nuclear factor-kappa B Essential Modulator (NEMO) deficiency). CF, but not NEMO, associated with significant immune transcriptome differences including some associated with severe SARS-CoV-2 infection (IL1B, IL17A, respective receptors). All subjects remained in their usual state of health from event through five-month follow-up. Here, asymptomatic infection resolved without evidence of prolonged immunological activation. Inclusion of subjects with underlying genetic disease illustrated the pathophysiological importance of context on impact of immunological response.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20178533

RESUMO

BackgroundEarly March 2020, a SARS-CoV-2 outbreak in the ski resort Ischgl in Austria initiated the spread of SARS-CoV-2 throughout Austria and Northern Europe. MethodsBetween April 21 and 27, a cross-sectional epidemiologic study targeting the full population of Ischgl (n = 1867), of which 79 % could be included (n = 1473, incl. 214 children), was performed. For each individual, the study involved a SARS-CoV-2 PCR, antibody testing and structured questionnaires. A mathematical model was used to help understand the influence of the determined seroprevalence on virus transmission. FindingsThe seroprevalence was 42.4% (95% CI 39.8-44.7). Individuals under 18 showed a significantly lower seroprevalence of 27.1% (95% CI 21.3-33.6) than adults (45%; 95% CI 42.2-47.7; OR of 0.455, 95% CI 0.356-0.682, p< 0.001). Of the seropositive individuals, 83.7% had not been diagnosed to have had SARS-CoV-2 infection previously. The clinical course was generally mild. Over the previous two months, two COVID-19-related deaths had been recorded, corresponding to an infection fatality rate (IFR) of 0.25% (95% CI 0.03-0.91). Only 8 (0.5 %) individuals were newly diagnosed to be infected with SARS-CoV-2 during this study. InterpretationIschgl was hit early and hard by SARS-CoV-2 leading to a high local seroprevalence of 42.4%, which was lower in individuals below the age of 18 than in adults. Mathematical modeling suggests that a drastic decline of newly infected individuals in Ischgl by the end of April occured due to the dual impact from the non-pharmacological interventions (NPIs) and a significant immunization of the Ischgl population. FundingHelmholtz Association, European Unions Horizon 2020 research and innovation program, German Research Foundation (DFG), state Tyrol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...